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Yu. M. Sorokin and N. 8. Stepanov UDC 532.593+ 534.222

Wave propagation in arbitrary linear systems with parameters varying in time and space
according to a traveling wave law is considered by using the Lagrangean description. It is
shown that the solution of this problem can be reduced to the solution of the stationary
problem for a fixed inhomogeneous medium. Consequently, the reflection and transmission
coefficients for a moving inhomogeneity can be expressed in terms of the analogous coef-
ficients for the auxiliary fixed layer. Relationships connecting the energy and frequency of
the interacting wave packets are obtained from which the equality of the total quantum flux
through the surface enclosing the moving inhomogeneous domain to zero follows. Some
particular cases are examined.

1. There is a significant number of papers devoted to wave propagation of different nature in sys-
tems with parameters varying in time and space in conformity with a traveling wave law (see [1, 2] and
the survey [3], for example). A change in the parameters can hence occur either because of the motion of
the inhomogeneous medium itself or because of the presence of powerful waves in the system (a sonic or
shock wave in a fluid or gas, a pumping wave in nonlinear electrodynamic systems, etc.). However, be-
cause of the diversity of the dynamical equations, the results obtained for specific medium models are
particular in nature, as a rule; hence, it is interesting to examine the mentioned questions from a single
point of view. The possibility hence appears not only of clarifying the degree of generality of systems of
different nature and of determining the domain of applicability of any result, but also of investigating new
cases and making some general deductions.

The possibility of such a single approach is well known in mechanics since the most general formu-
lation of the motion laws is here given by the principle of least action within the scope of the Lagrangean
description of mechanical systems. Since the field equations can also be written in the Lagrangean form
for a broad class of distributed systems, it is natural to try to use this apparatus for nonstationary media,
of which particular cases are systems with traveling parameters.

The variational principles have been applied to such systems for two limit cases in the literature:
slow ("adiabatic™) and jump laws of parameter variation. In particular, for systems with slowly varying
parameters the approach mentioned permits proving the conservation of the number of quanta in a quasi-
monochromatic wave packet independently of the physical nature of the wave [1, 3], and in the case of an
abrupt boundary the derivation of some general relationships connecting the total energy and frequency of
the interacting wave packets [3, 4] previously established just for individual models of a medium [1, 2].

Meanwhile, the real profile of the moving inhomogeneous domain must be taken into account for a
number of practical problems. Even for comparatively thin transition layers their approximation by a
jump becomes inapplicable as the frequency of one of the waves rises significantly, as occurs if the wave
phase velocity is close to the velocity of boundary motion. The adiabatic approximation also has a limited
domain of applicability; for example, it does not permit the analysis of signal reflection for a moving in-~
homogeneity.
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It is hence interesting to investigate the general case when the system parameters vary arbitrarily
according to a traveling wave law. The problem is hence complicated considerably since partial differen~
tial equations with variable coefficients must be considered for its solution. Although no exact analytical
solution of such a problem has been found successfully in the general case, it turns out to be possible to
reduce it to another stationary, auxiliary problem (exactly as had been done in [2] for waves in 2 moving
inhomogeneous plasma) and, consequently, to derive some energy relationships for quasiharmonic wave
packets in such systems which will extend the results obtained for sharp boundaries.

2. A broad class of linear systems can be described by a Lagrangean in the form of a quadratic
form of generalized coordinates (q) and their space and time derivatives (qx, g, etc.). For brevity, we
limit ourselves here to a one-dimensional system with one generalized coordinate described by the den-
sity of the Lagrange function

L = aq,? + 2bg.q, + cq + dg® (2.1)

where g, b, ¢ and d are arbitrary functions of the argument £ =x—Vt. (The addition of terms of the type
axt and q¢q to the Lagrangean does not influence the subsequent reasoning, and hence the corresponding
members in (2.1) are omitted.)

The Lagrange equation for the system (2.1) is
3 ]
0q + 2b9xt + €yt + Jx _3E (ﬂ' - Vb) + q: B_C (b - VL‘) - dq =0 (2-2)

Let us go over to new independent variables in (2.2). It is natural to take £ =x—V1i as one, and we
select the second (£ =£(x, t)) from the condition that the coefficient of the mixed derivative q, , equals zero.
(The coefficient of the first derivative 9 hence also vanishes.) As is easy to see, to do this the variable
¢ should be an integral of the equation

(@ — Vb)dt = (b — Vo) de

from which
st (2.3)
where o=g—2Vb+ V2.
After substitution of (2.3), Eq. (2.2) becomes
OCQ:H—E:G—IJ?— gz + gt —‘;%—dq=0 (2.4)

which allows separation of variables. The solution of (2.4) can be sought in the form

g = g (L) exp (iQF) 2.5)
where g(¢) satisfies the equation
gc§+gc&;§%—g(‘g‘+mu;b2)=0 2.6)

and @2 is the separation constant.

Let us note that (2.6) retains its form as V—0. In this case it describes wave propagation in some
stationary system (¢'=x) with the parameters ¢(x), b(x), c{x), and d(x). Now, if another also stationary
system with the parameters

a =a, b =0b, ¢ =acle, d =4d (2.7)
is considered, then the equation
, , 3 , d’ ! — (b')2
8x' + &' 5 Ina —g'[a—,+92 “—fv)ﬁ—)] =0
describing the wave propagation in such a system, will agree with (2.6).

This circumstance permits reduction of the solution of the initial nonstationary problem to the solu-
tion of another stationary problem about wave propagation in an auxiliary inhomogeneous system (K'). Its
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parameters are obtained from the parameters of the initial system (K) by a2 simple conversion in conform-
ity with (2.7). Such a comparison affords the possibility of using the methods and results of solutions
known for stationary systems for nonstationary problems.

3. The solution of the auxiliary (stationary) problem can be written, without limiting the generality,
as

¢ = i;‘ 0v exp [i (o't —{ #/az)] (3.1)

Let a change in the parameters in the system K occur within a finite (moving) domain, which corre~
sponds to a fixed layer in the K' system. Outside the layer, in the domain of constant parameters, Q, w',
and kj' have the sense of the amplitude, frequency, and wave number n of the normal waves existing in
such a system. Starting from (2.5), the very same solution q! can be written as follows:

‘ q' = g ({')exp (iQL') = g (z) exp [iQ (t - S :—: dx)] (3.2)
Comparing (3.1) and (3.2) we find :
Q=0q

’ g(z) = Z Q) exp [i(m’ S%,— dxeog /tl'dx)]
: _
from which there follows for q(£, £) in conformity with (2.5):

q= D) Q) exp(i0)) (3.3)
1
where
t=o(t+7 {5 a)—(wa

Defining the frequency and wave numbers in the system K as w l=89l/8t, kl=-ael/ ot, we obtain

a’

’ [ ., ’ r C .
‘wz:m(i—V2—~>+Vk,, ke=h'—V S o 3.4)

Let us note that the quantities w 1 kg found according to (3.4) will satisfy the customary Doppler re-
lationships [3]

0, _(15 Ulo) = (1 — l) (3.5)

¢}
where vy is the phase velocity in the wave [, and the subseript 0 refers to the incident wave.

As follows from (3.1) and (3.3), the solution of the initial problem outside the domain of parameter
variation is also written as the sum of n waves, whose amplitudes Qy equal the amplitudes Qp' of the cor~
responding waves in the system K'. This permits finding the power transformation coefficients Ty of the
primary wave into each of the secondary waves if the appropriate coefficients T7' are known for the aux-
iliary system K.

The mean energy flux density in the wave [ per period equals 5]

aL
sy = <Qtl 0qxl> = 2¢/ (@ig:' + bigl)> = Q2o (ki — bay) (3.6)
where ¢ P bl are Lagrange coefficients in the domain where the wave [ is propagated. Hence, expressing
the transformation coefficients Ty and Tj' in the systems K and K', we easily obtain

Tp=T, @ “zki — b, tlo'ko'—bol;'-')’

— (3.7

wo  agko — bowo a;'k;” —b,'0’

The values of T;' depend primarily on the profile of thebau‘xiliary layer, moreover, for dispersive
systems they may depend in a complex manner on w' and k'. The remaining factors in (3.7) describe ef-
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fects associated with the nonsiationarity of the system K, i.e., with the motion of the inhomogeneity. It is
easy to see, for example, that T;=0 is possible for some relationship of the parameters even if the cor-
responding coefficient is T7= 0. Since the flux {sy) is related to the energy density @l) by the relationship
(sl' <=>w wl), where u; is the group velocity in the wave [, and the amplitude Q; is finite, this means that
Ku;=0 in the system. The wave [ understandably hence entrains energy from the moving inhomogeneous
domain as before.

4. Ordinarily only the amplitude and power transformation coefficients are investigated in consid-
ering the energy relationships on moving boundaries, as has indeed been done above. Meanwhile, for sig-
nals in the form of wave packets it is also important to know the change in their total energy; the trans-
formation of the signal duration {pulse) or its spatial length (A) should hence be taken into account. As is
eagy to show [2, 3], this transformation has the following form for a homogeneous wave packet:

Al
Ag

u, —~V
u0~V

4.1)

Let us examine some energy relations below for quasiharmonic wave packets in systems of the type
(2.1). Let us define the number of quanta in a quasiharmonic pulse with energy W; and frequency wy as
N7=W;/wy; the quantity wy is evidently algebraic here since the frequency N7 can generally change sign
during transformation of a packet, as is easily seen from the Doppler relation (3.5). Let us prove the total
quantum flux through some surface enclosing a moving inhomogeneous domain is zero; the corresponding
condition can be written as

nj

D {N,sgn(u,-—V)}:?{% sgn(u;—V)}:: 0 (4.2)
1

Here and henceforth the braces will denote the difference in the values of the quantities on different
sides of the inhomogeneous domain. Taking account of (4.1) after having substituted Wy= (WZ>A 7> Weobtain

n n

u, -V . <sl> -V <wpd _
§{<mz> - }-@ H=— b=0 4.3)
The mean energy density per period in the wave [ equals [5]
= (gt BN = 0 20y (b, — 4.4
{wy) <‘Ir an,> Q 2oy (bik; — cyo) 4.4)

where it has been taken into account that {L)=0 for a harmonic wave. Substituting (3.6), (4.4), into (4.3),
we have

n
2 {0 (e — Vb ke — (b — Veyoy]} = 0 (4.5)
i
Expressing w; and k7 in (4.5) in terms of w' and k' in conformity with (3.4), we obtain
n
2 {0 (b’ — b} =0
=
or taking account of (2.7)
n n
'?_' {0 @'k —b/a)} =X {Ks'>} =0 (4.6)
]

It is easy to see that condition (4.6) means the total energy flux through a surface enclosing an in-
homogeneous domain in the stationary system K' equals zero, as is evident from the conservativenessof this
latter. The relationship (4.2) is thereby proved for quasimonochromatic wave packets in an arbitrary
Lagrange system of type (2.1) with traveling parameters.

Using (3.5), the relationship (4.2) can also be written as

iymmqm—w@—ﬁm

0 4.7
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Depending on the dispersive properties of the system (the signs of 1=V /v;) the equality (4.7) can
denote both conservation of the total number of quanta in the secondary waves relative to the primary, as
well as generation of new quanta because of the energy of the source assuring the motion of the inhomoge-
neous domain.

Thus, if the difference 1~V /vy has the same sign for all the waves ([=1-n), the relationship

n

[Nol =2 | Vi (4.8)
10
follows from (4.7); i.e., the sum of the quanta in the secondary waves equals the number of quanta in the
incident wave. If 1—V/vl is obtained different for one of the secondary waves, then the appropriate mem-
ber in the right side of (4.8) will enter with a minus; i.e., we obtain

n

INo|= 2} |Ni|—[N,]| (4.9)

140, v

The number of quanta in the secondary waves hence exceeds their number in the incident wave; i.e.,
generation of new quanta occurs. This latter can be treated, to a known degree, as the induced Cerenkov
radiation of 2 moving inhomogeneous medium which originates independently of whether the medium itself
or the parameter wave moves.

The relationships (4.8) and (4.9) have been obtained earlier in [2] for the particular case of a moving
inhomogeneous plasma.

To a definite degree (4.2) and (4.7) are analogous to the known Manley—Rowe relationships obtained
earlier [6] for continuous signals in parametric systems; in particular, they permit finding the energy
characteristics of wave packets in systems of type (2.1) if their frequency characteristics are known.

5. Let us henceforth examine some particular cases. As a first illustration let us consider plane
electromagnetic wave propagation in a fixed, nondispersive dielectric with the traveling parameters
(e =€ (g), p=p (£)). In the one-dimensional case, the system is described by the Lagrangean

1
L= gr(ec, 242 — p14,2) (5.1)
where c, is the speed of light in a vacuum. Here the potential A is selected as the generalized coordinate;
the electrical field intensity E and induction B are expressed as
E - — c*_lA’, B = Ax
Comparing (5.1) and (2.1) we find that here

a=—@mp), b=0, c=g-c % d=0

In conformity with (2.7) the auxiliary problem is described by a Lagrangean of the form (2.1) with
the coefficients

r__ 1—'82
¢ == 8’

' s ecy 2 ’_
b —0, 4 ——m, d =0

where f=|V]c, ! VE;T; physically this corresponds to electromagnetic wave propagation in a stationary
dielectric with the permittivity
e =s(l—$) p=pl—p)t (5.2)

Let there be just one wave in the injtial system (5.1) which does not satisfy the radiation conditions
and is incident toward the layer. Then in front of and behind the inhomogeneity, where the parameters &
and p are constant and equal to €4, 4 and €,, By, respectively, the solution can be written as two waves
(let us designate them with the indices, where the lower sign corresponds to a wave moving toward the in-
homogeneity), whose frequencies and wave numbers equal in conformity with (3.4)

or =0 (1FY,  kp=k1+p (5.3)
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The layer reflection and transmission coefficients (R and T) for motions at below-light speeds
(,81’2< 1) are found by the substitution of (5.3) into (3.7),
s (1B (1B
R=r (R, r=p({ER) (5.4)
Let us note that only the condition ,81 9<1is required for the validity of (5.4); here there may be

B8>1in the most inhomogeneous domain. &s is seen from (5. 4), if the dielectric permittivities are identi~
cal on both sides of the inhomogeneous layer (8;=8,); then T=T"; however, R= R".

For motions "aster than light" the domains of the variable parameters j; ;> 1 follow from (5.2):
g’ <0, p <o
Wave propagation in media with negative € and 1 generally has some singularities [7], which do not,
however, hinder the application of the formal method elucidated in Sec. 2-4. In this case, no reflected

wave originates, and there will be two transmitted waves behind the moving layer. Their transformation
coefficients (T and T_) can be obtained from (5.3) and (3.7) as

T+=¥%(If§§)2’ T=<1+“§'—:)(H—§;)2 (5.5)

For the case of a sharp boundary,R! and T' are easily expressed in terms of the values of the wave
resistances on different sides of the jump

r_ (pL—po\2 e R ~
R = (Pl+pz)' T = (o1 T oy (P—VP/S—VE/_&—P)

hence, the formulas (5.4), (5.5) agree with the results presented in {3].

The case when the quantity 1—3, changes sign within the layer is more complex. In particular, for
B1<1<By not two, as is customary, but three secondary waves originate here. Such cases are not examined
herein, but they have been investigated in [3] in application to a sharp interface.

The relationships (5.3)-(5.5) somewhat recall the relativistic conversion formulas; however, the
method under consideration is more convenient since the material equations in the system K' retain their
form, while they are replaced by the more complex Minkowski relations upon going over to the reference
system accompanying the parameter wave; moreover, according to (3.3) the wave amplitudes in K and K'
are identically equal.

6. The reflection and refraction of a weak acoustic wave by a2 moving inhomogeneity of parameters
of the medium can he examined analogously. The equations of motion for such a system have the same
form in the Lagrangean variables n and t [8] as in the previous case, and the Lagrangean can be written as
follows:

1
L =g O — geen 2903 ® ‘ (6.1)

Here p () is the variable density of the medium, py=const is the initial density, cg (¢) is the speed of
sound in the medium, ¢ is the velocity potential defined according to the relationships
Ps=—Qp VUg= po-lq)"l

where pg and vg are small particle pressure and velocity perturbations corresponding to a weak signal. It
is easy to see that (6.1) agrees with (5.1) to the accuracy of the substitution

po—>—dbup. Voe,—sdnVplee,, 90— 4, 1z
so that the deductions in Sec. 5 can be applied directly to this case also.

Using the results of [9] it is easy to show that a Lagrangean of the form (6.1) also describes the one-
dimensional problem about plane longitudinal and transverse wave interaction in an elastic isotropic me-
dium.

7. As an illustration of a dispersive system, let us consider plane electromagnetic waves in an in~

homogeneous plasma moving at the velocity V in a dielectric with constant parameters (g, p =const). The
term 1/2va2+ cy~1jA,which takes account of the kinetic energy of the elecirons and their interaction with
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the field, must be added to the expression for the Lagrangean (5.1) in this case; here j=eNv is the density
of the currents induced in the plasma, v is the electron velocity perturbation of the electromagnetic wave
(v <ey), N is the concentration, and e and m the charge and mass of the electrons. Taking into account
that in conformity with the equation of electron motion

[
v=A— — 4
N lTlC*

we obtain

1 TEN
L= (e, A2 — w42 —ec, 20, (§) 4%) (mp = 4’;;]\/) (7.1)
where wp is the plasma (Langmuir) frequency. It follows for the system (7.1) from (2.7) that an inhomo-
geneous plasma wp'(x) =wpV 1—4 in a medium with the refraction coefficient

W =YW = Ve — gy
corresponds to the auxiliary problem in this case.

A similar system has been examined earlier in [2]. The fundamental results of this paper are easily
obtained from (3.4), (3.7), and (4.7), where in conformity with (7.1) it is sufficient to put

2
e o,

Bre,? !’ = 7 8ne,?

a=—8np)y?t, b=0, ¢=

The presence of dispersion specifies the appearance of some singularities for wave propagation in
systems of the type (7.1). In particular, it turns out that for one incident wave, more than two secondary
waves cannot already originate here. (For 8<1 these are the reflected and refracted waves, and for 8> 1
they are two transmitted waves behind the moving inhomogeneity.) The plasma nature of the dispersion
also results in the fact that the transmission coefficient is T'=0 (meaning also T=0) for S<1 while R'=1
{a "moving mirror") for the frequencies w'< wpzw/ 1—,82 (where wpp 18 the plasma frequency behind the in~
homogeneous domain).

The authors are grateful to M. A. Miller for discussing the research and for useful remarks.
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