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Wave propagat ion in a r b i t r a r y  l inear  s y s t e m s  with p a r a m e t e r s  va ry ing  in t ime  and space  
according to a t r ave l ing  wave law is cons idered  by using the Lagrangean descr ipt ion.  I t  is 
shown that  the solution of this p rob lem can be reduced  to the solution of the s t a t ionary  
p rob l em  for  a fixed inhomogeneous medium.  Consequently,  the ref lect ion and t r a n s m i s s i o n  
coeff icients  for  a moving inhomogenei ty  can be e x p r e s s e d  in t e r m s  of the analogous coef-  
f ic ients  for  the aux i l i a ry  fixed layer .  Relat ionships  connecting the ene rgy  and f requency of 
the in te rac t ing  wave packe ts  a r e  obtained f rom which the  equali ty of the total  quantum flux 
through the su r face  encIosing the moving inhomogeneous domain to ze ro  follows. Some 
pa r t i cu l a r  c a se s  a r e  examined.  

1. There  is  a significant  number  of p ape r s  devoted to wave propagat ion  of different  nature  in s y s -  
t ems  with p a r a m e t e r s  vary ing  ha t ime  and space in conformi ty  with a t rave l ing  wave law (see [1, 2] and 
the su rvey  [3], for  example) .  A change in the p a r a m e t e r s  can hence occur  e i ther  because of the motion of 
the inhomogeneous med ium i t se l f  or  because of the p r e sence  of powerful  waves  in the s y s t e m  (a sonic or  
shock wave in a fluid or  gas,  a pumping wave in nonl inear  e lec t rodynamic  sy s t ems ,  etc.).  However,  be-  
cause  of the d ive rs i ty  of the dynamical  equations,  the resu l t s  obtained for  specif ic  med ium models  a r e  
pa r t i cu l a r  in na ture ,  as a rule;  hence,  it i s  in te res t ing  to examine the ment ioned quest ions f rom a single 
point of view. The poss ib i l i ty  hence appea r s  not only of c lar i fying the degree  of genera l i ty  of s y s t e m s  of 
different  na ture  and of de termining the domain of appl icabi l i ty  of any resu l t ,  but also of invest igat ing new 
eases  and making some  genera l  deductions. 

The poss ib i l i ty  of such a single approach  is  well known in mechanics  since the m o s t  genera l  f o r m u -  
lation of the motion laws is  he re  given by the pr inciple  of leas t  action within the scope of the Lagrangean 
descr ip t ion  of mechan ica l  s y s t em s .  Since the field equations can a lso  be wri t ten in the Lagrangean fo rm 
for  a broad c l a s s  of d is t r ibuted  sys t ems ,  i t  i s  na tura l  to t r y  to use this  appara tus  for  nons ta t ionary  media ,  
of which pa r t i cu l a r  cases  a re  s y s t e m s  with t rave l ing  p a r a m e t e r s .  

The var ia t iona l  p r inc ip Ies  have been applied to such s y s t e m s  for  two l imi t  e a se s  in the l i t e ra tu re :  
slow (~adiabatie~) and jump laws of p a r a m e t e r  var ia t ion.  In pa r t i cu la r ,  for  s y s t e m s  with slowly vary ing  
p a r a m e t e r s  the approach ment ioned p e r m i t s  proving  the conserva t ion  of the number  of quanta in a quas i -  
monochromat ic  wave packet  independently of the physica l  na ture  of the wave [1, 3], and in the ease  of an 
abrupt  boundary the der ivat ion of some general  re la t ionships  connecting the total  ene rgy  and f requency of 
the in te rac t ing  wave packets  [3, 4] p rev ious ly  es tab l i shed  just  for  individual models  of a med ium [1, 2]. 

Meanwhile,  the r ea l  prof i le  of the moving inhomogeneous domain m u s t  be taken into account  for  a 
number  of p rac t i ca l  p rob l ems .  Even for  compara t i ve ly  thin t rans i t ion  l aye r s  the i r  approximaticm by a 
jump becomes  inapplicable as the f requency of one of the waves  r i s e s  significantly,  as occu r s  if  the wave 
phase  veIoeity is c lose to the veloci ty of boundary motion. The adiabat ic  approximat ion  a lso  has a l imi ted 
domain of applicabi l i ty;  for  exampIe ,  i t  does not p e r m i t  the ana lys i s  of signal ref lect ion for  a moving in-  
homogeneity.  
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It is hence interesting to investigate the general case when the system parameters vary arbitrarily 
according to a traveling wave law. The problem is hence complicated considerably since partial differen- 
tial equations with variable coefficients must be considered for its solution. Although no exact analytical 
solution of such a problem has been found successfully in the general case, it turns out to be possible to 
reduce it to another stationary, auxiliary problem (exactly as had been done in [2] for waves in a moving 
inhomogeneous plasma) and, consequently, to derive some energy relationships for quasiharmonic wave 
packets in such systems which will extend the results obtained for sharp boundaries. 

2. A broad class of linear systems can be described by a Lagrangean in the form of a quadratic 
form of generalized coordinates (q) and their space and time derivatives (qx, qt, etc.). For brevity, we 
limit ourselves here to a one-dimensional system with one generalized coordinate described by the den- 
sity of the Lagrange function 

L : aq~ 2 + 2bq:~qt + cqt ~ + dq ~ (2.1) 

where  a,  b, c and d a r e  a r b i t r a r y  functions of the a rgument  ~ = x - V t .  (The addition of t e r m s  of the type 
qxqt and qtq to the Lagrangean does not influence the subsequent reasoning,  and hence the cor responding  
m e m b e r s  in (2.1) a re  omitted.)  

The Lagrange  equation for  the s y s t em (2.1) is  

o (b - -  Vc) - -  dq = 0 (2.2) aq~x + 2bq,:t 4- cqtt + q~: (a - -  Vb) + qt 

Let us go over  to new independent va r i ab l e s  in (2.2). I t  i s  na tura l  to take ~ = x - V t  as one, and we 
se lec t  the second (~ = ~ (x, t)) f rom the condition that  the coefficient  of the mixed  der iva t ive  q~ $ equals zero.  
(The coeff ic ient  of the f i r s t  der iva t ive  q~ hence also vanishes.)  As is  e a s y  to see,  to do this  ~fie va r i ab le  

should be an in tegra l  of the equation 

f rom which 

where  a = a - 2 V b +  V2c. 

( a - -  Vb)  d t  = (b - -  Vc) dx  

I b ~ V c  
~----t-- - -7 - -  d~ (2.3) 

After  substitution of (2.3), Eq. (2.2) becomes  

ac - -  b ~ O~ 

which allows separation of variables. 

where g([) sa t i s f i e s  the equation 

and ~2 is the separation constant. 

The solution of (2.4) can be sought in the fo rm 

q = g (~) exp ( ~ )  

(2.4) 

( 2 . 5 )  

(2.6) 

Let us note that (2.6) retains its form as V--* 0. In this case it describes wave propagation in some 
stationary system (['=x) with the parameters a(x), b(x), c(x), and d(x). Now, if another also stationary 
system with the parameters 

a' = a, b" = b, c' = ac/a, d' = d (2.7) 

is  cons idered ,  then the equation 

0 ' F d' f~2 a'c' - -  (b') ~ ] 0 g~ '  + gx' ~'x In a' - -  g [ - Z  + (a') - - - - - - -V~ --- 

descr ib ing  the wave propagat ion  in such a sys tem,  will ag ree  with (2.6). 

This  c i r cmns t ance  p e r m i t s  reduction of the solution of the ini t ial  nons ta t ionary  p r o b l e m  to the so lu-  
t2on of another  s t a t ionary  p rob l em  about wave propagat ion in an aux i l i a ry  inhomogeneous s y s t e m  (Kg. I t s  
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p a r a m e t e r s  are  obtained f rom the p a r a m e t e r s  of the initial sys tem (K) by a simple conversion in conform- 
ity with (2.7). Such a compar ison  affords the possibi l i ty of using the methods and resu l t s  of solutions 
known for  s ta t ionary sys tems  for  nonsta t ionary problems.  

3. The solution of the auxi l iary  (stationary) problem can be writ ten,  without l imiting the general i ty,  
a s  

l 

Let  a change in the p a r a m e t e r s  in the sys tem K occur  within a finite (moving) domain, which c o r r e -  
sponds to a fixed layer  in the K t sys tem.  Outside the layer ,  in the domain of constant parameters . .  Ql% w', 
and k l '  have the sense of the amplitude, frequency,  and wave number  n of the normal  waves exist ing in 
such a sys tem.  Starting f rom (2.5).. the v e r y  same solution qr can be writ ten as follows: 

Comparing (3.1) and (3.2) we find 

s -~o'  

f rom which there  follows for q(~, ~) in conformi ty  with (2.5): 

q = ~ Q~' ~xp (~o~) 
l 

where 

(3.3) 

Defining the f requency and wave numbers  in the sys tem K as W l =  OO1/Ot , k l = - O O l / O t  , we obtain 

( ) C e C (.Or o3z -- o)' 1 - -  V 2 -U- q- Vkl  , k~ ~ kz' - -  V ~7" (3.4) 

Let us note that the quantities Wl,  k l found according to (3.4) will sat isfy the cus tomary  Doppler r e -  
lationships [3] 

1 v = ( t  - v 

where v 1 is the phase veloci ty in the wave Ii arid the subser i  N 0 r e f e r s  to the incident wave. 

As folIows f rom (3.1) and (3.3), the solution of the initial  p roblem outside the domain of p a r a m e t e r  
var ia t ion is  aIso wri t ten as the sum of n waves,  whose amplitudes Q1 equal the amplitudes Ql r of the e o r -  
responding waves in the sys tem K w. This pe rmi t s  finding the power t ransformat ion  coefficients T l of the 
p r i m a r y  wave into each of the secondary  waves i f  the appropr ia te  coeff icients  Tlt a re  known for  the aux- 
i l i a ry  sys tem K'. 

The mean energy flux density in the wave l per  per iod equals [51 

(s t )  = ~ q t  l OL " ~q Z ~ = (2qt  t (alq~ z -~ blqtZ)) = Q~%)I (alkl - -  b~o)~) (3.6) 

where a l ,  b I are  Lagrange coefficients  in the domain where the wave l is  propagated. Hence, express ing  
the t ransformat ion  coefficients T 1 and T l '  in the sys tems K and K', we eas i ly  obtain 

Tt'~= Tz" ~ azk~ - -b l~  ao'ko'--bdo)' (3.7) 
Oo ~oko'Z b-'~o at'klT - -b t ' o  ' 

The values of TlT depend p r i m a r i l y  on the prof i le  of the au x i l i a ry  layer ,  moreove r ,  for  dispers ive 
sys tems  they may depend in a complex manner  on o:' and k t. The remaining fac tors  in (3.7) descr ibe  ef -  
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fects  a s soc i a t ed  with the nonsta t ionar i ty  of the s y s t e m  K, i .e . ,  with the motion of the inhomogeneity.  I t  i s  
e a sy  to see,  for  example ,  that Tl=O i s  poss ib le  for  some re la t ionship of the p a r a m e t e r s  even i f  the c o r -  
responding coeff icient  is T l r 0. Since the flux (s/) i s  re la ted  to the ene rgy  densi ty ~ l  ) by the re la t ionship  
( s / '  <=> u l w/), where  u l is  the group veloci ty  in the wave l, and the ampli tude Ql is  finite, this  means  that  

KUl= 0 in the sys tem.  The wave 1 unders tandably  hence ent ra ins  ene rgy  f r o m  the moving inhomogeneous 
domain as before.  

4. Ordinar i ly  only the ampli tude and power  t r ans fo rma t ion  coeff icients  a r e  inves t iga ted  in consid-  
er ing the energy  re la t ionships  on moving boundaries ,  as  has indeed been done above. Meanwhile,  for  s ig -  
nals  in the fo rm of wave packets  i t  i s  a lso impor tan t  to know the change in the i r  total  energy;  the t r a n s -  
format ion  of the signal duration (pulse) or  i t s  spat ia l  length (A) should hence be taken into account.  As i s  
easy  to show [2, 3], this  t r ans fo rma t ion  has  the following fo rm for  a homogeneous wave packet:  

A t u z - -  V I (4.1) A-V= ~-::--V--v I 

Let  us examine some energy  re la t ions  below for  quas iharmonic  wave packets  in s y s t e m s  of the type 
(2.1). Let  us define the num ber  of quanta in a quas iharmonic  pulse  with ene rgy  W l and f requency col as  
Nl=W1/wl;  the quantity co l i s  evidently a lgebra ic  he re  since the f requency N l can genera l ly  change sign 
during t r ans fo rma t ion  of a packet ,  as  is eas i ly  seen f rom the Doppler  re la t ion  (3.5). Let  us p rove  the total  
quantum flux through some sur face  enclosing a moving inhomogeneous domain is  zero;  the cor responding  
condition can be wri t ten as 

n ]  

~ { N ,  s g n ( u , - - V ) , = ~ ( ~  sgn(u, - -  V)I = 0 (4.2) 
l 

Here  and hencefor th  the b races  will denote the di f ference in the va lues  of the quanti t ies  on different  
s ides of the inhomogeneous domain. Taking account of (4.1) a f t e r  having subst i tuted Wl= <wl>A/, we obtain 

l ml J l t. {o I J 

The mean  energy  density p e r  per iod  in the wave l equals [5] 

<wl) = <qtt !OL > =  Q is~o: (bzk~ -- c/cot) (4.4) 

where  i t  has been taken into account that  (L>= 0 for  a ha rmonic  wave. Substituting (3.6), (4.4), into (4.3), 
we have 

~ {Ql ~ [(a/--  Vbt)k~ - -  (br-- Vat) coz]} ---- 0 (4.5) 
l 

Expre s s ing  co l and k l in (4.5) in t e r m s  of w' and k l '  in conformi ty  with (3.4), we obtain 

~ {Qi z (a~k,' -- b/co')} = 0 
/ ' 

or  taking account  of (2.7) 

• {'Qz 2 (al'kt' --  b{r ---- ~ {<sl'>} = 0 (4.6) 
Z 

l l 

I t  i s  e a s y  to see that  condition (4.6) means  the total  ene rgy  flux through a sur face  enclosing an in -  
homogeneous domain in the s ta t ionary  s y s t em K'  equals zero ,  as i s  evident f rom the conse rva t ivenes s  of this 
la t te r .  The re la t ionship  (4.2) is  the reby  p roved  for  quas imonochromat ic  wave packets  in an a r b i t r a r y  
Lagrange  s y s t e m  of type (2.1) with t r ave l ing  p a r a m e t e r s .  

Using (3.5), the re la t ionship  (4.2) can a lso  be wri t ten as  

l 
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Depending on the dispers ive proper t ies  of the sys tem (the signs of 1 - V / v / )  the equality (4.7) can 
denote both conservat ion of the total number of quanta in the secondary waves relat ive to the p r imary ,  as 
well as generation of new quanta because of the energy of the source assur ing  the motion of the inhomoge-  
neons domain. 

Thus, i f  the difference 1 - V / v / h a s  the same sign for all the waves (l  = l -n) ,  the relationship 

I No I = ,~ I N~[ (4.8) 

follows f rom (4.7); i .e. ,  the sum of the quanta in the secondary waves equals the number of quanta in the 
incident wave. If  1 - V / v / i s  obtained different for one of the secondary waves, then the appropriate m e m -  
ber in the r ight  side of (4.8) will enter  with a minus; i.e., we obtain 

INol = ~, IN~I--IN~I (4.9) 
l ~ 0 ,  v 

The number  of quanta in the secondary  waves hence exceeds their  number in the incident wave; i.e., 
generation of new quanta occurs .  This la t ter  can be treated,  to a known degree,  as the haduced Cerenkov 
radiation of a moving inhomogeneous medium which originates independently of whether the medium i tse l f  
or  the pa r ame te r  wave moves.  

The relat ionships (4.8) and (4.9) have been obtained ea r l i e r  in [2] for the par t icular  case of a moving 
inhomogeneous plasma.  

To a definite degree (4.2) and (4.7) are  analogous to the known Manley-Rowe  relat ionships obtained 
ea r l i e r  [6] for continuous signals in pa ramet r i c  sys tems;  in par t icular ,  they permi t  finding the energy 
charac te r i s t i c s  of wave packets in sys tems  of type (2.1) if  their  frequency charac te r i s t i cs  are  known. 

5. Let us henceforth examine some par t icu lar  cases .  As a f i rs t  i l lustration let us consider  plane 
e lectromagnet ic  wave propagation in a fixed, nondispersive dielectr ic with the traveling pa rame te r s  
(~ = e (~),/~ =/s (~)). In the one-dimensional  case,  the sys tem is descr ibed by the Lagrangean 

1 (ec,_ZAt2 __ [~_IAx2) (5.1) L = ~ -  

where c .  is the speed of light in a vacuum. Here the potential A is selected as the general ized coordinate; 
the e lec t r ica l  field intensity E and induction ]3 are  expressed  as 

E = - -  c , - 1 A t ,  

Comparing (5.1) and (2.1) we find that here  

B =  A x 

B 
�9 a = - - ( 8 n ~ )  -~, b = 0 ,  c=~-c,-L d = 0  

In conformity  with (2.7) the auxil iary problem is descr ibed by a Lagrangean of the form (2.1) with 
the coefficients 

a '  = 1 --p~ b' = 0, c' ~*-~ d' = 0 
8 ~  ' = 8 n ( l - - p ~ )  ' 

where ~ = [ V I c, - I  ~r~-;  physical ly this cor responds  to electromagnet ic  wave propagation in a s tat ionary 
dielectr ic with the permit t ivi ty  

s' = ~ ( i  - 13b -1, ~ '  --- ~ ( t -  p~)-~ (5 .2)  

Let there  be just one wave in the initial sys tem (5.1) which does not satisfy the radiation conditions 
and is incident toward the layer .  Then in front of and behind the inhomogeneity, where the pa ramete r s  
and#  are  constant and equal to e l , / ~  and e2, #2, respect ively,  the solution can be written as two waves 
(let us designate them with the indices, where the lower sign corresponds  to a wave moving toward the in-  
homogeneity), whose frequencies and wave numbers  equal in conformity with (3.4) 

~ +  = ~ '  (1 T- ~)-~, k+ = k' (f J: ~) (5.3) 
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The layer reflection and transmission coefficients (R and T) for motions at below-light speeds 
(ill,2 < i) are found by the substitution of (5.3) into (3.7), 

T = T (i--~--~) (5.4) \i 

Let us note that only the condition ill,2 < 1 is required for the validity of (5.4); here  there  may be 
fi> 1 in the most  inhomogeneous domain. As is seen f rom (5.4), if the dielectr ic  permit t iv i t ies  are  identi-  
cal on both sides of the inhomogeneous layer  (fi1=#2); then T = T' ;  however,  R ~ R' .  

For  motions "faster  than light" the domains of the variable pa r ame te r s  ill,2 > 1 follow f rom (5.2): 

e ' ~ 0 ,  ~ ' ~ 0  

Wave propagation in media with negative ~ and ~ general ly  has some singulari t ies  [7], which do not, 
however, hinder the application of the formal  method elucidated in Sec. 2-4. In this case ,  no ref lected 
wave originates,  and there  will be two t ransmi t ted  waves behind the moving layer .  Thei r  t ransformat ion  
coefficients (T+ and T_) can be obtained f rom (5.3) and (3.7) as 

rp R' (i--~11~ (i -~- T' ] \i--[-~] _ .  = ~rU--:-~ j ,  T = (5.5) 

For  the case of a sharp boundary,R'  and T'  a re  easi ly expressed  in t e rms  of the values of the wave 
res i s t ances  on different sides of the jump 

R '  [pj. - -  p2")2 T '  = 4pip2 
= ~p--T~--~/' (p~ + p~)~ (p' = I/~--V~" = ~ = P) 

hence, the formulas  (5.4), (5.5) agree  with the resul ts  presented in [3]. 

The case when the quantity 1 - f i  z changes sign within the layer  is more  complex. In par t icular ,  for 
fil < 1 <f12 not two, as is cus tomary,  but three secondary  waves originate here.  Such cases  are  not examined 
herein, but they have been investigated in [3] in application to a sharp interface.  

The relat ionships (5.3)-(5.5) somewhat recal l  the relat ivis t ic  conversion formulas;  however,  the 
method under considerat ion is more  convenient since the mater ia l  equations in the sys tem K' retain their  
form, while they are  replaced by the more  complex Minkowski relat ions upon going over  to the re fe rence  
sys tem accompanying the pa rame te r  wave; moreover ,  according to (3.3) the wave amplitudes in K and K' 
are  identically equal. 

6. The reflection and ref rac t ion of a weak acoustic wave by a moving inhomogeneity of pa r ame te r s  
of the medium can be examined analogously. The equations of motion for such a sys tem have the same 
form in the Lagrangean var iables  V and t [8] as in the previous case, and the Lagrangean can be written as 
follows: 

i p0 
L = ~ o  (p,2__ ~ ~02 (6.1) 

Here p (~) is the variable density of the medium, P0 = const is the initial density, c s (~) is the speed of 
sound in the medium, ~ is the velocity potential defined according to the relationships 

P, = "- (Pt, v. = po-lq)~ 

where Ps and v s are  small  par t ic le  p r e s s u r e  and velocity per turbat ions  corresponding to a weak signal. I t  
is easy  to see that (6.1) agrees  with (5.1) to the accuracy  of the substitution 

so that the deductions in Sec. 5 can be applied direct ly  to this case also. 

Using the resul ts  of [9] i t  is  easy  to show that a Lagrangean of the form (6.1) also descr ibes  the one- 
dimensional problem about plane longitudinal and t r ansve r se  wave interaction in an elast ic  i sot ropic  m e -  
dium. 

7. As an i l lustrat ion of a dispers ive system,  let us consider  plane e lect romagnet ic  waves in an in-  
homogeneous p lasma moving at the velocity V in a dielectr ic with constant pa r ame te r s  (s, # = const). The 
t e rm 1/2Nmv2+ c , - l jA,which takes account of the kinetic energy of the electrons and their  interaction with 
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the  f ie ld ,  m u s t  be a d d e d  to  the  e x p r e s s i o n  f o r  t he  L a g r a n g e a n  (5.1) in t h i s  c a s e ;  h e r e  j = e N v  i s  t he  d e n s i t y  
of the  c u r r e n t s  i n d u c e d  in  the  p l a s m a ,  v i s  the  e l e c t r o n  v e l o c i t y  p e r t u r b a t i o n  of  the  e l e c t r o m a g n e t i c  wave  
(v << c , ) ,  N i s  the  c o n c e n t r a t i o n ,  and  e and m the  c h a r g e  and m a s s  of the  e l e c t r o n s .  T a k i n g  in to  accoun t  
t ha t  in  c o n f o r m i t y  wi th  the  equa t ion  of  e l e c t r o n  m o t i o n  

we obta in  

v ~ A - -  e--~-A 
t~C, 

~-~---/ 

where O3p is the plasma (Langmuir) frequency. It follows for the system (7.1) from (2.7) that an inhomo- 
geneous plasma ~p'(X) = Wp4~-~ in a medium with the refraction coefficient 

corresponds to the auxiliary problem in this case. 

A similar system has been examined earlier in [2]. The fundamental results of this paper are easily 
obtained from (3.4), (3.7), and (4.7), where in conformity with (7.1) it is sufficient to put 

a = -- ( 8 ~ )  -1, b ~ O, c -- 8~c.~ -- 8:~c, ----c-  

The presence of dispersion specifies the appearance of some singularities for wave propagation in 
systems of the type (7.1). In particular, it turns out that for one incident wave, more than two secondary 
waves cannot already originate here. (For fi < 1 these are the reflected and refracted waves, and for ~ > 1 
they are two transmitted waves behind the moving in/homogeneity.) The plasma nature of the dispersion 
also results in the fact that the transmission coefficient is T'=0 (meaning also T=0) for fl< 1 while RV=l 
(a "moving mirror") for the frequencies w' < ~0p2~-~ (where wp2 is the plasma frequency behind the in- 
homogeneous domain). 

The authors are grateful to M. A. Miller for discussing the research and for useful remarks. 
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